אופיר שורני

אופיר שורני

ישראל
פרילנסר

אודותינו

מומחה בתחום למידת מכונה עם 8 שנות ניסיון בהובלת פתרונות בינה מלאכותית מרעיון ועד ליישום בסביבות תעשייתיות. מנהיג מוכח עם מומחיות בלמידה עמוקה, ראייה ממוחשבת ומודלי שפה גדולים (LLMs), ותשוקה לבניית יישומי בינה מלאכותית חדשניים המספקים ערך עסקי. מחויב ללמידה עצמית והתקדמות, מחפש תפקיד הנהגה בו אוכל לתרום לפיתוח בינה מלאכותית מתקדמת.

שפות

עברית
שפת אם
אנגלית
שליטה קרובה לשפת אם

תחומי התמחות

טכנולוגיה

400 ₪ לשעה
AI, בינה מלאכותית
optimized desalination design efficiency by 80% through novel data structuring and multi-class regression algorithms.
Machine Learning
optimized desalination design efficiency by 80% through novel data structuring and multi-class regression algorithms.
Deep Learning
Developed a CNN-based algorithm to optimize numerical simulations, leading to improved performance in a UF filter control cleaning system.

נסיון תעסוקתי

יולי 2024 - היום

Senior Machine Learning Researcher

PROMAI
  • - LLM Development & Optimization: Developed and optimized an Open Source multi-modal LLM for automated work instructions in manufacturing, considering GPU capabilities (precision, quantization), and implementing RAG, prompt engineering, and QLoRA fine-tuning.
  • - Mentorship: Provided guidance and mentorship to junior team members.
  • - Computer Vision: Involved in real-time image segmentation and detection project using CNOS and DINO.
נובמבר 2023 - היום

Research Scientist

Tel Aviv University
  • The Center for AI and Data Science (TAD)
  • - Developed a multimodal deep learning model for geospatial analysis: Combined satellite imagery and tabular data to forecast flood impact on water quality using developed algorithms with Google Products such as Google Earth API.
פברואר 2022 - פברואר 2024

Applied Machine Learning Engineer

NI (Now Emerson)
  • - Led wafer classification project: Developed, deployed, and scaled an explainable model using SHAP for wafer classification. Built CI/CD pipelines for automation and integrated user feedback for continuous improvement. Deployed on AWS SageMaker.
  • - Time series analysis expertise: Applied advanced forecasting techniques to predict EV battery performance.
ינואר 2019 - פברואר 2022

Data Scientist

IDE Technologies LTD
  • - Spearheaded machine learning R&D initiatives, including a project that optimized desalination design efficiency by 80% through novel data structuring and multi-class regression algorithms.

קורסים, הסמכות, לימודי תעודה

2024

Generative AI with Large Language Models

deeplearning.ai
2020

Deep Learning Specialization

deeplearning.ai
2020

SQL for Data Science

University of California, Davis
2019

Machine Learning

Stanford University

תארים אקדמיים

2018 - 2021

M.Sc. Mechanical Engineering

Tel Aviv University
  • - Final Project: Developed a CNN-based algorithm to optimize numerical simulations, leading to improved performance in a UF filter control cleaning system.
  • - Project on using ResNet for predicting tau-tau decay events at CERN in TensorFlow.
  • - Forecasting significant height of sea waves using time series models.
2014 - 2018

B.Sc. Mechanical Engineering

Tel Aviv University
  • - Research assistant utilizing Python OpenCV for video tracking moth's movements.

שירות צבאי

2008 - 2014

סרן

חיל תקשוב

פטנטים וקניין רוחני

מאי 2024

SYSTEM AND METHOD FOR AUTOMATIC WAFER MAP CLASSIFICATION

20240170348
  • A method of testing semiconductor wafers includes receiving a wafer bin map for a semiconductor wafer, wherein the wafer bin map includes a plurality of points corresponding to a plurality of defective dies fabricated on the semiconductor wafer, identifying a cluster of points in the wafer bin map from the plurality of points, and generating a filtered bin map using the cluster of points. The method also includes extracting a set of features for the filtered bin map, wherein the set of features comprises a set of global features common to the semiconductor wafer and a set of cluster features specific to the filtered bin map, executing a trained machine learning model using the set of features as inputs to generate a pattern classification, and determining, based on the pattern classification, that the semiconductor wafer includes a pattern of defective dies caused by a defective manufacturing process.